skip to main content


Search for: All records

Creators/Authors contains: "Steuernagel, Burkhard"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Since emerging in Brazil in 1985, wheat blast has spread throughout South America and recently appeared in Bangladesh and Zambia. Here we show that two wheat resistance genes, Rwt3 and Rwt4 , acting as host-specificity barriers against non- Triticum blast pathotypes encode a nucleotide-binding leucine-rich repeat immune receptor and a tandem kinase, respectively. Molecular isolation of these genes will enable study of the molecular interaction between pathogen effector and host resistance genes. 
    more » « less
  2. null (Ed.)
    Abstract Key message The first cytological characterization of the 2N v S segment in hexaploid wheat; complete de novo assembly and annotation of 2N v S segment; 2N v S frequency is increasing 2N v S and is associated with higher yield. Abstract The Aegilops ventricosa 2N v S translocation segment has been utilized in breeding disease-resistant wheat crops since the early 1990s. This segment is known to possess several important resistance genes against multiple wheat diseases including root knot nematode, stripe rust, leaf rust and stem rust. More recently, this segment has been associated with resistance to wheat blast, an emerging and devastating wheat disease in South America and Asia. To date, full characterization of the segment including its size, gene content and its association with grain yield is lacking. Here, we present a complete cytological and physical characterization of this agronomically important translocation in bread wheat. We de novo assembled the 2N v S segment in two wheat varieties, ‘Jagger’ and ‘CDC Stanley,’ and delineated the segment to be approximately 33 Mb. A total of 535 high-confidence genes were annotated within the 2N v S region, with > 10% belonging to the nucleotide-binding leucine-rich repeat (NLR) gene families. Identification of groups of NLR genes that are potentially N genome-specific and expressed in specific tissues can fast-track testing of candidate genes playing roles in various disease resistances. We also show the increasing frequency of 2N v S among spring and winter wheat breeding programs over two and a half decades, and the positive impact of 2N v S on wheat grain yield based on historical datasets. The significance of the 2N v S segment in wheat breeding due to resistance to multiple diseases and a positive impact on yield highlights the importance of understanding and characterizing the wheat pan-genome for better insights into molecular breeding for wheat improvement. 
    more » « less
  3. Abstract

    Central to the diversity of wheat products was the origin of hexaploid bread wheat, which added the D-genome ofAegilops tauschiito tetraploid wheat giving rise to superior dough properties in leavened breads. The polyploidization, however, imposed a genetic bottleneck, with only limited diversity introduced in the wheat D-subgenome. To understand genetic variants for quality, we sequenced 273 accessions spanning the known diversity ofAe. tauschii. We discovered 45 haplotypes inGlu-D1, a major determinant of quality, relative to the two predominant haplotypes in wheat. The wheat allele2 + 12was found inAe. tauschiiLineage 2, the donor of the wheat D-subgenome. Conversely, the superior quality wheat allele5 + 10allele originated in Lineage 3, a recently characterized lineage ofAe. tauschii, showing a unique origin of this important allele. These two wheat alleles were also quite similar relative to the total observed molecular diversity inAe. tauschiiatGlu-D1.Ae. tauschiiis thus a reservoir for uniqueGlu-D1alleles and provides the genomic resource to begin utilizing new alleles for end-use quality improvement in wheat breeding programs.

     
    more » « less
  4. Abstract

    Stem rust is an important disease of wheat that can be controlled using resistance genes. The geneSuSr-D1identified in cultivar ‘Canthatch’ suppresses stem rust resistance.SuSr-D1mutants are resistant to several races of stem rust that are virulent on wild-type plants. Here we identifySuSr-D1by sequencing flow-sorted chromosomes, mutagenesis, and map-based cloning. The gene encodes Med15, a subunit of the Mediator Complex, a conserved protein complex in eukaryotes that regulates expression of protein-coding genes. Nonsense mutations in Med15b.D result in expression of stem rust resistance. Time-course RNAseq analysis show a significant reduction or complete loss of differential gene expression at 24 h post inoculation inmed15b.Dmutants, suggesting that transcriptional reprogramming at this time point is not required for immunity to stem rust. Suppression is a common phenomenon and this study provides novel insight into suppression of rust resistance in wheat.

     
    more » « less
  5. Abstract Rye ( Secale cereale L.) is an exceptionally climate-resilient cereal crop, used extensively to produce improved wheat varieties via introgressive hybridization and possessing the entire repertoire of genes necessary to enable hybrid breeding. Rye is allogamous and only recently domesticated, thus giving cultivated ryes access to a diverse and exploitable wild gene pool. To further enhance the agronomic potential of rye, we produced a chromosome-scale annotated assembly of the 7.9-gigabase rye genome and extensively validated its quality by using a suite of molecular genetic resources. We demonstrate applications of this resource with a broad range of investigations. We present findings on cultivated rye’s incomplete genetic isolation from wild relatives, mechanisms of genome structural evolution, pathogen resistance, low-temperature tolerance, fertility control systems for hybrid breeding and the yield benefits of rye–wheat introgressions. 
    more » « less